\begin{flalign*}
a^{2} + b^{2} &= (a+b)^{2} - 2ab \\ &= (a-b)^{2} +2ab & &
\end{flalign*}
\begin{flalign*}
a^2 + \frac{1}{a^{2}}=\left (a+ \frac{1}{a} \right )^2 -2 \\ = \left (a- \frac{1}{a} \right )^2 +2 & &
\end{flalign*}
\begin{flalign*}
(a+b)^{2} &= (a-b)^{2} + 4ab & &
\end{flalign*}
\begin{flalign*}
(a-b)^{2} &= (a+b)^{2} - 4ab & &
\end{flalign*}
\begin{flalign*}
a^{2} + b^{2} + c^{2} &= (a+b+c)^{2} - 2(ab+bc+ca) & &
\end{flalign*}
\begin{flalign*}
a^{3} + b^{3} &= (a+b)^{3} - 3ab(a+b) & &
\end{flalign*}
\begin{flalign*}
a^{3} - b^{3} &= (a-b)^{3} + 3ab(a-b) & &
\end{flalign*}
\begin{flalign*}
a^3 + \frac{1}{a^3} = \left ( a + \frac{1}{a} \right )^3 - 3 \left ( a + \frac{1}{a} \right ) & &
\end{flalign*}
\begin{flalign*}
a^3 - \frac{1}{a^3} = \left ( a - \frac{1}{a} \right )^3 + 3 \left ( a - \frac{1}{a} \right ) & &
\end{flalign*}
\begin{flalign*}
a^{5} + b^{5} = (a^{3} +b^{3})(a^{2}+b^{2}) - a^{2}b^{2}(a+b) & &
\end{flalign*}
'개념과 적용 > [개념] 공통수학1' 카테고리의 다른 글
[공통수학1] 이차부등식 개념과 예제_ D=0인 경우 (0) | 2025.05.15 |
---|---|
[필수예제] 절대값 기호가 2개인 일차부등식 (0) | 2025.05.13 |
[필수유형] 대칭형의 연립이차방정식 (0) | 2025.05.09 |
[교과개념] 삼차사차방정식의 풀이 (0) | 2025.05.06 |
[공통수학1] 곱셈공식 기본 (0) | 2025.04.22 |